
Windows PowerShell CMD __ ocTony

Powershell alias –shortkey : get-alias | Out-File -FilePath "c:\temp\alias.txt"

PowerShell is an interactive Command-Line Interface (CLI) and automation engine
designed by Microsoft to help design system configurations and automate
administrative tasks.

--write output filename:

Get-Process | Where-Object { $_.WorkingSet -gt 100MB } | Sort-Object CPU -
Descending | Out-File -FilePath "c:\temp\processs.txt"

Get-Process -ComputerName 192.168.29.117 | Where-Object { $_.WorkingSet -gt
100MB } | Sort-Object CPU -Descending

PowerShell is a cross-platform task automation solution made up of a
command-line shell, a scripting language, and a configuration management
framework. PowerShell runs on Windows, Linux, and macOS. – Microsoft
Learn

https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4

The latest version is 7.3 (7.4 is available in preview mode). If you are a
Windows 10

What are the different ways I can run PowerShell as an
Administrator?

1. Press WIN + R, type in powershell, press Ctrl+Shift+Enter.
Click OK to run as Administrator.

2. Type powershell into the Taskbar search field. Select Run as
Administrator from the list of options in the right panel of the
results list.

3. Open the Command Prompt, type powershell, and press Enter.
Type start-process PowerShell -verb runas and press Enter.

4. *Also in the Command Prompt, type runas /netonly
/user:RemoteDomain\Administrator powershell (substitute a
URL or hostname for RemoteDomain)

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.3

How to Run cmdlets

In a nutshell, a cmdlet is a single-function command. You input cmdlets
into the command line just as you would with a traditional command or
utility. Cmdlets are the main way to interact with the CLI.

In PowerShell, most cmdlets are written in C# and comprised of
instructions designed to perform a function that returns a .NET object.

Over 200 cmdlets can be used in PowerShell. Windows PowerShell
command prompt isn’t case-sensitive, so these commands can be typed
in either upper or lower case. The main cmdlets are listed below:

 Get-Location – Get the current directory
 Set-Location – Get the current directory
 Move-item – Move a file to a new location
 Copy-item – Copy a file to a new location
 Rename – item Rename an existing file
 New-item – Create a new file

https://cdn.comparitech.com/wp-content/uploads/2018/05/how-to-run-cmdlets.jpg

For a full list of commands available to you, use the Get-

Command cmdlet. In the command line you would enter the following:

PS C:\> Get-Command

It is important to note that Microsoft restricts users from using custom
PowerShell cmdlets in its default settings. In order to use PowerShell
cmdlets, you need to change
the ExecutionPolicy from Restricted to RemoteSigned. Remote
Signed will allow you to run your own scripts but will stop unsigned
scripts from other users.

To change your Execution policy, type in the following PowerShell
command:

PS C:\> Set-ExecutionPolicy

To change to RemoteSigned, type the following command:

PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

To run a script, enter its folder and filename into the PowerShell
window:

PS c:\powershell\mynewscript.ps1

Here are some commands that are common to PowerShell and
Windows:

 cd: Change Directory. This command is used to change the

current working directory. In PowerShell, Set-Location can be

used as well.

 cls: Clear Screen. This command clears the screen of the

console. In PowerShell, Clear-Host or its alias cls can be used.

 dir: Directory. This command lists the files and subdirectories in

the directory. In PowerShell, Get-ChildItem can be used as

well.

 echo: This command prints text to the console. In

PowerShell, Write-Output can be used as well.

 copy: This command copies files. In PowerShell, Copy-Item can

be used as well.

 del: Delete. This command deletes one or more files. In

PowerShell, Remove-Item can be used as well.

 move: This command moves files from one location to another. In

PowerShell, Move-Item can be used as well.

 type: This command displays the contents of a text file. In

PowerShell, Get-Content can be used as well.

 find: This command searches for a text string in a file. In

PowerShell, Select-String can be used as well.

 exit: This command closes the command prompt or terminal

window. It works the same in both Command Prompt and
PowerShell.

Backing Up an SQL Database with PowerShell

Many people use PowerShell to back up SQL databases. The
command-line interface can conduct full database backups, file backups,
and transaction log backups. There are many ways to backup a

database in PowerShell, but one of the simplest is to use the Backup-

SqlDatabase command. For example:

PS C:\> Backup-SqlDatabase -ServerINstance “Computer\Instance” -Database

“Databasecentral”

This will create a database backup of a database with the name
‘Databasecentral’ (or the name of your chosen database’.

To back up a transaction log, you would input:

https://cdn.comparitech.com/wp-content/uploads/2018/05/powershell-SQL.jpg

PS C:\> Backup-SqlDatabase -ServerInstance “Computer\Instance” -Database

“Databasecentral” -BackupAction Log

This will create a transaction log of the selected database.

The Essential PowerShell Commands

Using aliases will only get you so far on PowerShell, so it’s important to
commit to learning everything you can about PowerShell’s native
commands. We touched on some of these above, but we’re going to
break down the main ones in much more detail below.

Get-Help

This command should be at the very top of any new user’s list when it
comes to PowerShell. The Get-Help command can be used to literally
get help with any other PowerShell command. For example, if you know
the name of a command, but you don’t know what it does or how to use
it, the Get-Help command provides the full command syntax.

For example, if you wanted to see how Get-Process works, you
would type:

PS C:\> Get-Help -Name Get-Process

PS C:\> Set-ExecutionPolicy

As touched on earlier in this guide, Microsoft has a restricted execution
policy that prevents scripting on PowerShell unless you change it. When
setting the execution policy, you have four options to choose from:

 Restricted – The default execution policy that stops scripts from
running.

 All Signed – Will run scripts if they are signed by a trusted
publisher

 Remote Signed – Allows scripts to run which have been created
locally

 Unrestricted – A policy with no restrictions on running scripts

PS C:\> Get-ExecutionPolicy

If you’re using PowerShell, you may not always work on a server that
you’re familiar with. Running the command Get-Execution Policy will
allow you to see which policy is active on the server before running a
new script. If you then see the server in question operating under a
restricted policy, you can then implement the Set-
ExecutionPolicy command to change it.

Get-Service

One of the most important commands is Get-Service, which provides

the user with a list of all services installed on the system, both running
and stopped. This cmdlet can be directed by using specific service
names or objects.

For example, if you were to type PS C:\> Get-Service, you would

be shown a list of all services on your computer, their statuses, and
display names.

To use this command to retrieve specific services, type: PS C:\ Get-

Service “WMI*” to retrieve all services that begin with WMI.

If you wanted to restrict output to active services on your computer, input
the following command:

PS C:\ Get-Service | Where-Object {$_.Status -eq “Running”}

ConvertTo-HTML

When using PowerShell, you might want to generate a report about the
information you’ve seen. One of the best ways to do this is by using
the ConvertTo-HTML command. This cmdlet allows you to build reports
with tables and color, which can help to visualize complex data. Simply
choose an object and add it to the command.

For example, you could type:

Get-PSDrive | ConvertTo-Html

This returns a mass of information, so it’s a good idea to limit it to a file
with the Out-File command. A better alternative command is:

Get-PSD Drive | ConvertTo-Html | Out-File -FilePath PSDrives.html

This will then generate an HTML file in table form. For example:

You can then add your own colors and borders to refine its presentation.

Export-CSV (and Get-Service)

No less important for increasing visibility is the Export-CSV command. It
allows you to export PowerShell data into a CSV file. Essentially, this
command creates a CSV file compiling all of the objects you’ve selected
in PowerShell. Every object has its own line or row within the CSV file.
This command is primarily used to create spreadsheets and share data
with external programs.

To use this command, you would type:

PS C:\> Get-Service | Export-CSV c:\service.csv

It’s important to remember not to format objects before running the
Export-CSV command. This is because formatting objects results in only
the formatted properties being placed into the CSV file rather than the
original objects themselves. In the event that you want to send specific
properties of an object to a CSV file, you would use the Select-
Object cmdlet.

To use the Select-Object cmdlet, type:

https://cdn.comparitech.com/wp-content/uploads/2018/05/HTML-table.jpg

PS C:\> Get-Service | Select-Object Name, Status | Export-CSV

c:\Service.csv

Get-Process

If you want to view all processes currently running on your system,
the Get-Process command is very important. To get a list of all active
processes on your computer, type:

PS C:\ Get-Process

Notice that if you don’t specify any parameters, you’ll get a breakdown of
every active process on your computer. To pick a specific process,
narrow the results down by process name or process ID and combine
that with the Format-List cmdlet, which displays all available properties.
For example:

PS C:\ Get-Process windowrd, explorer | Format-List *

This provides you with comprehensive oversight of all active processes.

Get-EventLog

If you ever want to access your computer’s event logs (or logs on remote
computers) while using PowerShell, then you’re going to need the Get-
EventLog command. This cmdlet only works on classic event logs, so
you’ll need the Get-WinEvent command for logs later than Windows
Vista.

To run the event log command, type:

https://cdn.comparitech.com/wp-content/uploads/2018/05/get-eventlog-security-cmdlet.jpg

PS C:\> Get-EventLog -List

This will show all event logs on your computer.

One of the most common reasons users look at event logs is to see
errors. If you want to see error events in your log, simply type:

PS C:\> Get-EventLog -LogName System -EntryType Error

If you want to get event logs from multiple computers, specify which
devices you want to view (listed below as “Server1” and “Server2”). For
example:

PS C:\> Get-EventLog - LogName “Windows PowerShell” -ComputerName “local

computer”, “Server1”, “Server2”.

Parameters you can use to search event logs include:

After User specifies a date and time and the cmdlet will locate events that occurred after

AsBaseObject Provides a System.Diagnostics.EventLogEntry for each event

AsString Returns the output as strings

Before User specifies a date and time and the cmdlet will locate events that occurred before

ComputerName Used to refer to a remote computer

Parameters you can use to search event logs include:

EntryType Specifies the entry type of events (Error, Failure Audit, Success Audit, Information, Warning)

Index Specifies index values the cmdlet finds events from

List Provides a list of event logs

UserName Specifies usernames associated with a given event

 Stop-Process

When using PowerShell, it’s not uncommon to experience a process
freezing up. Whenever this happens, you can use Get-Process to
retrieve the name of the process experiencing difficulties and then stop it
with the Stop-Process command.

https://cdn.comparitech.com/wp-content/uploads/2018/05/stop-process.jpg

Generally, you terminate a process by its name. For example:

PS C:\> Stop-Process -Name “notepad”

In this example, the user has terminated Notepad by using the Stop-

Process command.

PowerShell Commands List

Here are 25 basic PowerShell commands:

Command name Alias Description

Set-Location cd, chdir, sl Sets the current working location to a specified location.

Get-Content cat, gc, type Gets the content of the item at the specified location.

Add-Content ac Adds content to the specified items, such as adding words to a file.

Set-Content sc Writes or replaces the content in an item with new content.

Copy-Item copy, cp, cpi Copies an item from one location to another.

Remove-Item
del, erase, rd, ri, rm,

rmdir
Deletes the specified items.

Command name Alias Description

Move-Item mi, move, mv Moves an item from one location to another.

Set-Item si Changes the value of an item to the value specified in the command.

New-Item ni Creates a new item.

Start-Job sajb Starts a Windows PowerShell background job.

Compare-Object compare, dif Compares two sets of objects.

Group-Object group Groups objects that contain the same value for specified properties.

Invoke-

WebRequest
curl, iwr, wget Gets content from a web page on the Internet.

Measure-Object measure
Calculates the numeric properties of objects, and the characters, words, and lines in string

objects, such as files …

Command name Alias Description

Resolve-Path rvpa Resolves the wildcard characters in a path, and displays the path contents.

Resume-Job rujb Restarts a suspended job

Set-Variable set, sv
Sets the value of a variable. Creates the variable if one with the requested name does not

exist.

Show-Command shcm Creates Windows PowerShell commands in a graphical command window.

Sort-Object sort Sorts objects by property values.

Start-Service sasv Starts one or more stopped services.

Start-Process saps, start Starts one or more processes on the local computer.

Suspend-Job sujb Temporarily stops workflow jobs.

Command name Alias Description

Wait-Job wjb
Suppresses the command prompt until one or all of the Windows PowerShell background

jobs running in the session are …

Where-Object ?, where Selects objects from a collection based on their property values.

Write-Output echo, write
Sends the specified objects to the next command in the pipeline. If the command is the

last command in the pipeline,…

PowerShell: A powerful command-line interface

Although making the transition to PowerShell can seem quite complex,
it’s command-line interface operates much the same as any other. It may
have its own unique cmdlets, but a wealth of online resources can help
you with any administrative task you can think of. To get the most out of
PowerShell, you simply need to get used to the multitude of commands
available to you.

As a new user, it is easy to become daunted by PowerShell’s 200-plus
cmdlets. Make sure you start out with the command line interface before
graduating to the full-blown GUI. Regardless of whether you’re new to
PowerShell or command-line interfaces, more than enough information
is available online to help you make the most of this powerful tool.

PowerShell Community Resources

 PowerShell Slack
 PowerShell Discord Server

PowerShell Commands FAQs

https://join.slack.com/t/powershell/shared_invite/zt-eodd93as-RHYl6s~9XH8FNyE09M7zmA
https://discord.gg/Ju25cw6

How do I navigate in Windows PowerShell?

The most important navigation actions you need to know for PowerShell
is how to get into it and how to get out again. The easiest way to access
the PowerShell environment is to type PowerShell in the search field of
your taskbar. PowerShell runs in its own window, so you can close it
down just by clicking on the X in the top right corner of the window’s
frame. The proper way to close the window is to type exit and the
command prompt. The standard navigation commands of the Command
Prompt work in PowerShell so use cd to change directory. Enter a drive
letter followed by a colon (eg. D:) to switch to another drive.

Is Windows PowerShell the same as Command Prompt?

PowerShell is an advancement on Command Prompt because its shell
scripting capabilities include better programming constructs than those
available for batch jobs in Command Prompt. All of the Command
Prompt commands are available in PowerShell but then PowerShell has
extra commands and utilities, called cmdlets. Think of PowerShell as
Command Prompt +.

How do I learn bash scripting?

Bash scripting is a Unix shell script. As Linux is an adaptation of Unix, a
shell script written for Linux is often called a Bash script. There are a lot
of online tutorials on how to create a Bash script. In order to avoid
confusion, try not to refer to a PowerShell script as a Bash script.

How can I make Command Prompt default instead of
PowerShell?

When you press WIN + X, you now get a PowerShell window instead of
the old Command Prompt. To stick with Command Prompt, go to the
Start menu and click on Settings. In the Settings menu,
select Personalization. Select Taskbar in the left-hand menu of the
Personalization Settings Window. In the main panel of that window, look
for Replace Command Prompt with Windows PowerShell in the

menu when I right-click the Start button or press Windows key+X.
Set that to Off.

What are the different ways I can run PowerShell as an
Administrator?

1. Press WIN + R, type in powershell, press Ctrl+Shift+Enter.
Click OK to run as Administrator.

2. Type powershell into the Taskbar search field. Select Run as
Administrator from the list of options in the right panel of the
results list.

3. Open the Command Prompt, type powershell, and press Enter.
Type start-process PowerShell -verb runas and press Enter.

How do I run PowerShell commands?

You can run PowerShell commands from a Command Prompt window
by using the format: powershell -command ” <PowerShellCode> “ but
put your PowerShell command inside the quotes instead
of <PowerShellCode>. If your PowerShell command requires a value in
quotes, use single quotes in there instead of double-quotes. The
surrounding quotes in the execution example here should remain as
double-quotes.

Define the username of the account you want to disable

$username = "Username"

#Create a local account

New-LocalUser -Name "Adminpro8" -Password (ConvertTo-SecureString "Naxxtiox11.." -AsPlainText -

Force) -PasswordNeverExpires

Calculate the date six months from now

$expirationDate = (Get-Date).AddMonths(6)

Disable the account by setting the expiration date

Set-LocalUser -Name "Adminpro2" -AccountExpires $expirationDate

Remove the user from the administrators group

Remove-LocalGroupMember -Group "Administrators" -Member "Adminpro2"

----Create local Adminpro account & belong AdminGroup - After RDP

#Create a local account

New-LocalUser -Name "Adminpro2" -Password (ConvertTo-SecureString "Naxxtiox11.." -AsPlainText -

Force) -PasswordNeverExpires

ADD the user from the administrators group

add-LocalGroupMember -Group "Administrators" -Member "Adminpro2"

#Create a local account

New-LocalUser -Name "Adminpro2" -Password (ConvertTo-SecureString "Naxxtiox11.." -AsPlainText -

Force) -PasswordNeverExpires

ADD the user from the administrators group

add-LocalGroupMember -Group "Administrators" -Member "Adminpro2"

#Enable ping command

New-NetFirewallRule -DisplayName "Allow ICMPv4-In" -Protocol ICMPv4 -IcmpType 8 -Enabled True -

Action Allow

#list port

Get-NetTCPConnection -ComputerName "RemoteServerName" -State Established | Select-Object

LocalAddress, LocalPort, RemoteAddress, RemotePort

-------check PS version

$remoteServer = "<RemoteServerName>"

try {

 # Run a command on the remote server to get its PowerShell version

 $psVersion = Invoke-Command -ComputerName $remoteServer -ScriptBlock {

 $PSVersionTable.PSVersion

 }

 Write-Host "PowerShell version on $remoteServer: $($psVersion.Major).$($psVersion.Minor)"

} catch {

 Write-Host "Failed to retrieve PowerShell version on $remoteServer. Error: $_"

}

------------------------- add account in remote servers

Connect to the remote server using PowerShell Remoting

Enter-PSSession -ComputerName 4.242.219.22 -Credential (Get-Credential)

Enter your credentials when prompted

Create a new local user account

New-LocalUser -Name adminpro3 -Password (ConvertTo-SecureString -AsPlainText "Naxxtiox11.." -

Force)

Optionally, add the user to any necessary groups:

Add-LocalGroupMember -Group Administrator -Member adminpro3

Exit the remote session

Exit-PSSession

COMMAND Scan open ports:

$server = "RemoteServerName" # Replace "RemoteServerName" with the actual server name or IP

address

Define a range of ports to test

$startPort = 1

$endPort = 65535

Loop through the range of ports and test each one

for ($port = $startPort; $port -le $endPort; $port++) {

 $result = Test-NetConnection -ComputerName $server -Port $port -InformationLevel Quiet

 # Check if the port is open

 if ($result.TcpTestSucceeded) {

 Write-Output "Port $port is open on $server."

 }

}

$server = "192.168.216.133" # Replace "RemoteServerName" with the actual server name or IP address

Define a range of ports to test

$startPort = 1

$endPort = 65535

Loop through the range of ports and test each one

for ($port = $startPort; $port -le $endPort; $port++) {

 $result = Test-NetConnection -ComputerName $server -Port $port -InformationLevel Quiet

 # Check if the port is open

 if ($result.TcpTestSucceeded) {

 Write-Output "Port $port is open on $server."

 }

}

DISABLE ACCOUNT in 6mos

Calculate the date six months from now

$expirationDate = (Get-Date).AddMonths(6)

Disable the account by setting the expiration date

Set-LocalUser -Name "Adminpro2" -AccountExpires $expirationDate

--

net user NewAdmin NewPassword /add

net localgroup Administrators NewAdmin /add

Import the Active Directory module

Import-Module ActiveDirectory

Retrieve a specific Active Directory object by specifying its distinguished name

Get-ADObject -Identity "CN=John Doe,OU=Users,DC=example,DC=com"

Retrieve all objects of a specific object class (e.g., user objects)

Get-ADObject -Filter {ObjectClass -eq "user"}

Retrieve all objects within a specific Organizational Unit (OU)

Get-ADObject -SearchBase "OU=Users,DC=example,DC=com"

Retrieve all objects with a specific attribute value

Get-ADObject -Filter {EmailAddress -eq "john.doe@example.com"}

